Zhang, X. Skill motion recognition and digital modeling of intangible cultural heritage for smart cities based on computer vision. 13682. https://doi.org/10.1117/12.3073363
Xiwen ZhangComputer Vision Convolution Convolutional networks Convolutional neural networks Cultural preservation Digital modeling Graph Convolutional Network Graphic methods Historic preservation Human pose estimations Image segmentation Intangible cultural heritages Interactive computer graphics Motion estimation Motion recognition Pattern recognition systems Recognition models Simulation platform Skill motion recognition Smart City Urban cultural intelligence Virtual reality
Bakalos, N., Rallis, I., Doulamis, N., Doulamis, A., Voulodimos, A., & Vescoukis, V. Motion Primitives Classification Using Deep Learning Models for Serious Game Platforms. 40, 26-38. https://doi.org/10.1109/MCG.2020.2985035
Nikolaos Bakalos Ioannis Rallis Nikolaos Doulamis Anastasios Doulamis Athanasios Voulodimos Vassilios VescoukisBi-directional analysis Convolution Cultural heritages Deep learning Intangible cultural heritage Intangible cultural heritages Learning systems Long short-term memory Low-cost sensors machine learning Monitoring capabilities Motion Primitives Classification Motion analysis Motion primitives Processing layer Serious Game Serious games Visual information dance
Bakalos, N., Rallis, I., Doulamis, N., Doulamis, A., Protopapadakis, E., & Voulodimos, A. (2019). Choreographic Pose Identification using Convolutional Neural Networks. 95-101. Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/VS-Games.2019.8864522
Nikolaos Bakalos Ioannis Rallis Nikolaos Doulamis Anastasios Doulamis Eftychios Protopapadakis Athanasios VoulodimosAI for Serious Games Background subtraction Classification performance Convolution Convolutional neural networks convolutional neural network Data set Deep neural networks Gesture recognition Intangible cultural heritage Intangible cultural heritages Learning schemes Moving averages Neural networks Posture identification Serious games Virtual reality
Xu, Y., Jiang, Y., Wu, Y., & Zhang, Y. (2021). Classifying Wu-Qing Couplets and General Couplets with Structural and Semantic Features. 12278 LNAI, 562-575. Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-030-81197-6_48
Yang Xu Yuru Jiang Yu Wu Yuyao ZhangAttention mechanism Attention mechanisms Brain Classification (of information) Convolution convolutional neural network Convolutional neural networks Intangible cultural heritages Long short-term memory Long short-term memory network Memory network Semantic features Semantics Structural feature Text classification Text processing Traditional cultures
Putra, F. A., Jamil, D. A. C., Prabandanu, B. A., Faruq, S., Pradana, F. A., Alya, R. F., et al. (2021). Classification of Batik Authenticity Using Convolutional Neural Network Algorithm with Transfer Learning Method. Présenté à. Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ICIC54025.2021.9632937
F.A. Putra D.A.C. Jamil B.A. Prabandanu S. Faruq F.A. Pradana R.F. Alya H.A. Santoso F. Al Zami F.O. SaputraAuthentication Batik Batik authenticity classification Batik authenticity classification CNN Classification (of information) Convolution convolutional neural network Convolutional neural networks Crime Deep learning Historic preservation Indonesia Learning algorithms machine learning Machine learning models Machine-learning Neural networks algorithms Transfer learning Transfer learning Transfer learning methods