Wang, Z., & Liu, Y. Quantitative Evaluation of Intangible Cultural Heritage Inheritance: Stroke Trajectory Analysis and Machine Learning Model Construction for Paper-Cutting Craftsmanship. 1332-1336. https://doi.org/10.1109/AIITA65135.2025.11048123
Ziyi Wang Yong LiuAIGC Arts computing Contrastive Learning Globalisation Innovative approaches Intangible cultural heritages Learning systems machine learning Machine learning models Machine-learning Model construction Neural networks Paper cutting Quantitative evaluation Trajectories Trajectory analysis
Morales-i-Gras, J., Orbegozo-Terradillos, J., Larrondo-Ureta, A., & Pena-Fernandez, S. Networks and Stories. Analyzing the Transmission of the Feminist Intangible Cultural Heritage on Twitter. 5. https://doi.org/10.3390/bdcc5040069
Jordi Morales-i-Gras Julen Orbegozo-Terradillos Ainara Larrondo-Ureta Simon Pena-FernandezCultural transmission feminism Hashtivism Intangible cultural heritages machine learning machine learning Machine-learning Scientific community Social Network Analysis Social aspects Social media Social movements Social network analysis Social networking (online) Transmissions Twitter
Sotiropoulos, D. N., Tsihrintzis, G. A., Virvou, M., & Tsichrintzi, E. -A. Machine Learning in Intangible Cultural Analytics: The Case of Greek Songs Lyrics. 2021-November, 299-305. IEEE Computer Society. https://doi.org/10.1109/ICTAI52525.2021.00050
Dionisios Sotiropoulos George Tsihrintzis Maria Virvou Enangelia-Aikaterini TsichrintziComputer aided analysis Computer software Data base Data mining Digitisation E - learning Historic preservation Intangible cultural analytic Intangible cultural heritages Learning algorithms Lyric analytic machine learning Machine-learning Modeling languages Music Natural language processing systems Semantics Software-tools Song recommendation Work of art Data mining E-learning intangible cultural analytics lyrics analytics machine learning song recommendations text analysis
Putra, F. A., Jamil, D. A. C., Prabandanu, B. A., Faruq, S., Pradana, F. A., Alya, R. F., et al. (2021). Classification of Batik Authenticity Using Convolutional Neural Network Algorithm with Transfer Learning Method. Présenté à. Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ICIC54025.2021.9632937
F.A. Putra D.A.C. Jamil B.A. Prabandanu S. Faruq F.A. Pradana R.F. Alya H.A. Santoso F. Al Zami F.O. SaputraAuthentication Batik Batik authenticity classification Batik authenticity classification CNN Classification (of information) Convolution convolutional neural network Convolutional neural networks Crime Deep learning Historic preservation Indonesia Learning algorithms machine learning Machine learning models Machine-learning Neural networks algorithms Transfer learning Transfer learning Transfer learning methods
Zhang, X., & Jin, Y. (2023). A Method of Protecting Sensitive Information in Intangible Cultural Heritage Communication Network Based on Machine Learning. Lecture Notes In Computer Science (Including Subseries Lecture Notes In Artificial Intelligence And Lecture Notes In Bioinformatics), 13656 LNCS, 214-227. https://doi.org/10.1007/978-3-031-20099-1_18
X. Zhang Y. JinCharacteristic indices Communications networks Cryptography Data communication systems Intangible cultural heritages Learning algorithms machine learning Machine learning algorithms Machine-learning Network-based On-machines Sensitive informations Specific values Target tracking Targets tracking Telecommunication networks