Classification of Batik Authenticity Using Convolutional Neural Network Algorithm with Transfer Learning Method. Presentado en. Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ICIC54025.2021.9632937
. (2021). Tang, M., Xie, S., He, M., & Liu, X. (2022). Character Recognition in Endangered Archives: Shui Manuscripts Dataset, Detection and Application Realization. Applied Sciences, 12. https://doi.org/10.3390/app12115361 (Original work published jun)
Rallis, I., Bakalos, N., Doulamis, N., Doulamis, A., & Voulodimos, A. (2021). Bidirectional long short-term memory networks and sparse hierarchical modeling for scalable educational learning of dance choreographies. Visual Computer, 37, 47-62. https://doi.org/10.1007/s00371-019-01741-3 (Original work published jan)
Bizzarri, S., De Gennaro, T., Careccia, C., Bertozzi, A., Degli Esposti, M., Al Dahini, H. M., & Al Ghefeili, B. R. (2022). A Multidisciplinary Approach to the Conservation of Salut, Sultanate of Oman. Studies In Conservation, 67, 23-31. https://doi.org/10.1080/00393630.2022.2084965 (Original work published aug)
Wang, Y., & Fu, R. (2020). A Methodological Reflection: Deconstructing Cultural Elements for Enhancing Cross-Cultural Appreciation of Chinese Intangible Cultural Heritage (Vol. 12215 LNCS). En (Vol. 12215 LNCS). Springer. https://doi.org/10.1007/978-3-030-50267-6_32
Mindoro, J. N., Festijo, E. D., & De Guzman, M. T. G. (2021). A Comparative Study of Deep Transfer Learning Techniques for Cultural (Aeta) Dance Classification utilizing Skeleton-Based Choreographic Motion Capture Data. 74-79. Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ICCIKE51210.2021.9410796