Schleider, T., Troncy, R., Ehrhart, T., Dorozynski, M., Rottensteiner, F., Sebastián Lozano, J., & Lo Cicero, G. Searching Silk Fabrics by Images Leveraging on Knowledge Graph and Domain Expert Rules. 41-49. Association for Computing Machinery, Inc. https://doi.org/10.1145/3475720.3484445
T. Schleider R. Troncy T. Ehrhart M. Dorozynski F. Rottensteiner J. Sebastián Lozano G. Lo CiceroCultural heritages Deep learning Digital devices Digital tools Domain experts Expert rule Fashion industry Image retrieval Intangible cultural heritages Knowledge domains Knowledge graph Knowledge graphs Knowledge management Search engines Silk Silk fabrics Textiles cultural heritage Deep learning Image retrieval Knowledge graph
Ma, Y., Lu, Q., & Lv, S. Dyeing of Silk through Iron Ion-Induced Formation of Hydrophobic Lignin Coatings. https://doi.org/10.1080/15440478.2022.2101580
Ying Ma Qinfu Lu Shanshan LvContinuous demand Delta rivers Dyeing Dyeing process Hydrophobicity Hydrophobics Intangible cultural heritages Iron compounds Iron ions Iron species Lignin Metal ions Protective Coatings Silk Silk fabrics Coating Dyeing hydrophobic Iron lignin
Xuelin, Q., Jue, H., Ying, S., & Zheng, L. Digital Style Design of Nanjing Brocade Based on Deep Learning. 339-342. Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ICCST53801.2021.00077
Q. Xuelin H. Jue S. Ying L. ZhengComponent: nanjing brocade Deep learning Digital methods Digital protection Digitisation E-learning Intangible cultural heritages Nanjing Silk fabrics Style designs Style transfer Textiles component: nanjing brocade Deep learning Digital protection style transfer
Pan, Y., Zhou, J., & Dai, J. (2022). A study on the characteristics and contemporary innovative design of Tongxiang Puyuan silk. Journal Of Silk, 59, 95-102. https://doi.org/10.3969/j.issn.1001-7003.2022.05.013
Y. Pan J. Zhou J. DaiPuyuan silk Tongxiang aesthetic characteristic business model Silk fabrics variety definition