Chen, Q., Zhao, W., Wang, Q., & Zhao, Y. The Sustainable Development of Intangible Cultural Heritage with AI: Cantonese Opera Singing Genre Classification Based on CoGCNet Model in China. 14. https://doi.org/10.3390/su14052923
Qiao Chen Wenfeng Zhao Qin Wang Yawen ZhaoArtificial intelligence Cantonese opera Deep learning Intangible cultural heritage Sustainable development artificial neural network cultural heritage spatiotemporal analysis Sustainable development
Zhu, Q., & Liu, X. The application of artificial intelligence in the revitalization of intangible cultural heritage helps the cultural industry succeed. https://doi.org/10.1177/14727978251337999
Qingxiang Zhu Xiaobin LiuAdaptive donkey and smuggler algorithm-mutated malleable long short-term memory Artificial intelligence Cultural industries Deep learning Digital representations Industry growth Intangible cultural heritage Intangible cultural heritages Mean square error Memory modeling Memory network Short term memory
Li, Y., & Liu, X. Sketch Based Thangka Image Retrieval. 2066-2070. https://doi.org/10.1109/IAEAC50856.2021.9390657
Y. Li X. LiuContent recognition Deep Learing Deep learning Image retrieval Image data Image retrieval Intangible cultural heritages Learning technology Matching rules On-machines Sketch Thangka Tibetans United Nations
Schleider, T., Troncy, R., Ehrhart, T., Dorozynski, M., Rottensteiner, F., Sebastián Lozano, J., & Lo Cicero, G. Searching Silk Fabrics by Images Leveraging on Knowledge Graph and Domain Expert Rules. 41-49. Association for Computing Machinery, Inc. https://doi.org/10.1145/3475720.3484445
T. Schleider R. Troncy T. Ehrhart M. Dorozynski F. Rottensteiner J. Sebastián Lozano G. Lo CiceroCultural heritages Deep learning Digital devices Digital tools Domain experts Expert rule Fashion industry Image retrieval Intangible cultural heritages Knowledge domains Knowledge graph Knowledge graphs Knowledge management Search engines Silk Silk fabrics Textiles cultural heritage Deep learning Image retrieval Knowledge graph
Schleider, T., Troncy, R., Ehrhart, T., Dorozynski, M., Rottensteiner, F., Sebastián Lozano, J., & Lo Cicero, G. Searching Silk Fabrics by Images Leveraging on Knowledge Graph and Domain Expert Rules. 41-49. Association for Computing Machinery, Inc. https://doi.org/10.1145/3475720.3484445
T. Schleider R. Troncy T. Ehrhart M. Dorozynski F. Rottensteiner J. Sebastián Lozano G. Lo CiceroCultural heritages Deep learning Digital devices Digital tools Domain experts Expert rule Fashion industry Image retrieval Intangible cultural heritages Knowledge domains Knowledge graph Knowledge graphs Knowledge management Search engines Silk Silk fabrics Textiles cultural heritage Deep learning Image retrieval Knowledge graph
Dong, R., Chen, Y., Cai, D., Nakagawa, S., Higaki, T., & Asai, N. Robot motion design using bunraku emotional expressions–focusing on Jo-Ha-Kyū in sounds and movements*. 34, 299-312. https://doi.org/10.1080/01691864.2019.1703811
R. Dong Y. Chen D. Cai S. Nakagawa T. Higaki N. AsaiBunraku puppet Deep learning Emotional expressions Express emotions Intangible cultural heritages Jo-Ha-Kyū Learning methods Machine design Motion analysis Motion design Robot motion Robots Uncanny valley Deep learning motion design
Dong, R., Chen, Y., Cai, D., Nakagawa, S., Higaki, T., & Asai, N. Robot motion design using bunraku emotional expressions–focusing on Jo-Ha-Kyū in sounds and movements*. 34, 299-312. https://doi.org/10.1080/01691864.2019.1703811
R. Dong Y. Chen D. Cai S. Nakagawa T. Higaki N. AsaiBunraku puppet Deep learning Emotional expressions Express emotions Intangible cultural heritages Jo-Ha-Kyū Learning methods Machine design Motion analysis Motion design Robot motion Robots Uncanny valley Deep learning motion design
Su, Z., & Ouyang, X. Research on the Application of Computer Embroidery Skills in Modern Chinese Fashion Design. 1992. IOP Publishing Ltd. https://doi.org/10.1088/1742-6596/1992/3/032004
Z. Su X. OuyangArtificial intelligence algorithms Computer technology Computers Deep learning fashion design Garment industry History Intangible cultural heritages Production capacity Social factor Textile industry Textile printing Three-dimensional model
Tang, H., Yue, C., Hu, W., & Qiao, L. Object Detection of Few-Shot Thangka Images by Contrastive Proposal Coding. 1916-1919. Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ICSP54964.2022.9778717
H. Tang C. Yue W. Hu L. QiaoContrast Learning Contrast learning Deep learning Deep learning Digital protection Few-Shot Learning Few-shot learning Image coding Intangible cultural heritages Modern technologies Object detection Object recognition Objects detection target detection Targets detection Thangka Image Thangka image Tibetans
Tang, H., Yue, C., Hu, W., & Qiao, L. Object Detection of Few-Shot Thangka Images by Contrastive Proposal Coding. 1916-1919. Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ICSP54964.2022.9778717
H. Tang C. Yue W. Hu L. QiaoContrast Learning Contrast learning Deep learning Deep learning Digital protection Few-Shot Learning Few-shot learning Image coding Intangible cultural heritages Modern technologies Object detection Object recognition Objects detection target detection Targets detection Thangka Image Thangka image Tibetans