02610nas a2200493 4500000000100000000000100001008004100002260000800043653002300051653002100074653003700095653002800132653002200160653002300182653001700205653002200222653001000244653002000254653001400274653002500288653002200313653001500335653001100350653002200361653001500383653002200398653001500420653002300435653002000458653001900478653001400497653002100511653001500532653001500547100001800562700001700580700002100597700001400618245007900632856015200711490000800863520122500871022002002096 2020 d cjan10aAtmospheric optics10aComputation time10aFast Fourier transform algorithm10aFast Fourier transforms10aFourier transform10aFourier transforms10aHealth risks10aInformed decision10aLight10aLight pollution10aLuminance10aNatural environments10aOptical astronomy10aPhotometry10aPixels10aPollution control10aRadiometry10aRelated functions10aSatellites10aSpatial resolution10aLight pollution10amapping method10anightglow10aoptical property10aphotometer10aradiometer1 aSalvador Bara1 aFabio Falchi1 aRiccardo Furgoni1 aRaul Lima00aFast Fourier-transform calculation of artificial night sky brightness maps uhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85073255076&doi=10.1016%2fj.jqsrt.2019.106658&partnerID=40&md5=eed0f071c0cca5b69aa3acaa2b2a83ea0 v2403 aLight pollution poses a growing threat to optical astronomy, in addition to its detrimental impacts on the natural environment, the intangible heritage of humankind related to the contemplation of the starry sky and, potentially, on human health. The computation of maps showing the spatial distribution of several light pollution related functions (e.g. the anthropogenic zenithal night sky brightness, or the average brightness of the celestial hemisphere) is a key tool for light pollution monitoring and control, providing the scientific rationale for the adoption of informed decisions on public lighting and astronomical site preservation. The calculation of such maps from satellite radiance data for wide regions of the planet with sub-kilometric spatial resolution often implies a huge amount of basic pixel operations, requiring in many cases extremely large computation times. In this paper we show that, using adequate geographical projections, a wide set of light pollution map calculations can be reframed in terms of two-dimensional convolutions that can be easily evaluated using conventional fast Fourier-transform (FFT) algorithms, with typical computation times smaller than 10(-6) s per output pixel. a00224073 (ISSN)