TY - JOUR KW - Immaterial culture KW - Machine translation KW - Neural machine translation KW - Post-editese KW - Translation quality KW - Translationese AU - Pilar Sanchez-Gijon AU - Ramon Huerta AB - This article deals with the consequences of using a neural machine translation trained from corpora compiled from translations of specific text genres produced in particular professional contexts. Phenomena such as translationese and post-editese, associated with the use of machine translation, underline the need to orient research towards new approaches to the question of professional translation quality. Working from the viewpoint that languages should be safeguarded as intangible cultural heritage, it poses a range of questions related to the impact of machine translation on target cultures and languages: how it is perceived, quality and how its use can alter the standard language. It points out the need to define translation quality thresholds that go beyond the aspects most commonly related to error detection, which is the most economically viable type of correction. BT - Revista tradumàtica: traducció i tecnologies de la informació i la comunicació DA - dec DO - 10.5565/rev/tradumatica.277 LA - Catalan M1 - 18 N1 - Publisher: Departament de Traducció i d Interpretació Section: Revista tradumàtica: traducció i tecnologies de la informació i la comunicació N2 - This article deals with the consequences of using a neural machine translation trained from corpora compiled from translations of specific text genres produced in particular professional contexts. Phenomena such as translationese and post-editese, associated with the use of machine translation, underline the need to orient research towards new approaches to the question of professional translation quality. Working from the viewpoint that languages should be safeguarded as intangible cultural heritage, it poses a range of questions related to the impact of machine translation on target cultures and languages: how it is perceived, quality and how its use can alter the standard language. It points out the need to define translation quality thresholds that go beyond the aspects most commonly related to error detection, which is the most economically viable type of correction. PY - 2020 SP - 1 EP - 10 T2 - Revista tradumàtica: traducció i tecnologies de la informació i la comunicació TI - Conseqüències de la traducció automàtica neuronal sobre les llengües d arribada UR - https://www.scopus.com/inward/record.uri?eid=2-s2.0-85101003665&doi=10.5565%2fREV%2fTRADUMATICA.277&partnerID=40&md5=1c6c64970e6c0e1c3da5ddb974754e3b SN - 15787559 (ISSN) ER -