TY - JOUR KW - Artificial intelligence KW - HCI KW - Hidden Markov models KW - Human computer interaction KW - Human computer interfaces KW - Inertial navigation systems KW - Inertial sensor KW - Inertial sensors KW - Intangible cultural heritages KW - Learning systems KW - machine learning KW - Methodological frameworks KW - Modeling and recognition KW - perception KW - Real time KW - Sensory perception KW - Statistical modeling KW - Wheels AU - S. Manitsaris AU - A. Glushkova AU - F. Bevilacqua AU - F. Moutarde AB - This research has been conducted in the context of the ArtiMuse project that aims at the modeling and renewal of rare gestural knowledge and skills involved in the traditional craftsmanship and more precisely in the art of wheel-throwing pottery. These knowledge and skills constitute intangible cultural heritage and refer to the fruit of diverse expertise founded and propagated over the centuries thanks to the ingeniousness of the gesture and the creativity of the human spirit. Nowadays, this expertise is very often threatened with disappearance because of the difficulty to resist globalization and the fact that most of those "expertise holders" are not easily accessible due to geographical or other constraints. In this article, a methodological framework for capturing and modeling gestural knowledge and skills in wheel-throwing pottery is proposed. It is based on capturing gestures using wireless inertial sensors and statistical modeling. In particular, we used a system that allows for online alignment of gestures using a modified Hidden Markov Model. This methodology is implemented into a human-computer interface, which permits both the modeling and recognition of expert technical gestures. This system could be used to assist in the learning of these gestures by giving continuous feedback in real time by measuring the difference between expert and learner gestures. The system has been tested and evaluated on different potters with rare expertise, which is strongly related to their local identity. BT - ACM Journal on Computing and Cultural Heritage DA - jul DO - 10.1145/2627729 LA - English M1 - 2 N1 - Publisher: Association for Computing Machinery N2 - This research has been conducted in the context of the ArtiMuse project that aims at the modeling and renewal of rare gestural knowledge and skills involved in the traditional craftsmanship and more precisely in the art of wheel-throwing pottery. These knowledge and skills constitute intangible cultural heritage and refer to the fruit of diverse expertise founded and propagated over the centuries thanks to the ingeniousness of the gesture and the creativity of the human spirit. Nowadays, this expertise is very often threatened with disappearance because of the difficulty to resist globalization and the fact that most of those "expertise holders" are not easily accessible due to geographical or other constraints. In this article, a methodological framework for capturing and modeling gestural knowledge and skills in wheel-throwing pottery is proposed. It is based on capturing gestures using wireless inertial sensors and statistical modeling. In particular, we used a system that allows for online alignment of gestures using a modified Hidden Markov Model. This methodology is implemented into a human-computer interface, which permits both the modeling and recognition of expert technical gestures. This system could be used to assist in the learning of these gestures by giving continuous feedback in real time by measuring the difference between expert and learner gestures. The system has been tested and evaluated on different potters with rare expertise, which is strongly related to their local identity. PY - 2014 T2 - ACM Journal on Computing and Cultural Heritage TI - Capture, Modeling, and Recognition of Expert Technical Gestures in Wheel-Throwing Art of Pottery UR - https://www.scopus.com/inward/record.uri?eid=2-s2.0-84979833345&doi=10.1145%2f2627729&partnerID=40&md5=e685801c0e916dcbf4996855b1b3097a VL - 7 SN - 15564673 (ISSN) ER -